
16 The Delphi Magazine Issue 58

Under Construction:
Delphi 5 Active Server Objects
by Bob Swart

Contrary to my promise last
month, I won’t be talking about

MIDAS 3 object pooling and con-
nection brokering mechanisms in
MIDAS 3 (I hit some problems). For
the next two months we’ll be find-
ing out about Delphi 5’s support for
ASP Objects.

Active Server Pages
Before we start with Active Server
Objects, let’s examine the encapsu-
lating technology called Active
Server Pages (ASP). Before ASP, we
could use certain scripting lan-
guages (such as JavaScript or
VBScript) only on the client (ie, the
web browser). For server-side pro-
cessing, we could use CGI
applicatons, ISAPI/NSAPI web
server extension DLLs, or other
scripting languages like iHTML
(www.ihtml.com). Microsoft
released ASP 1.0 in 1996, which was
supported by Internet Information
Server (IIS) 3.0. A year later ASP 2.0
took over, supported by IIS 4. A
short while ago, ASP 3.0 was intro-
duced with Windows 2000 and IIS 5.
ASP 3.0 has some new features
which we’ll cover next time. For
now, we’ll mainly focus on the
more widely used ASP 2.0 features.

ASP is a server-side web solu-
tion. ASP comprises an optional
compiled part (the Active Server
Object) and a scripting part. ASP
scripting is included inside <% and
%> tags. For more background
information on ASP 2.0, check out

the book ASP 2.0 Programmer’s
Reference published by WROX,
reviewed by me in the June issue of
Developers Review.

In this article, we’ll focus on the
Active Server Objects that are
created and used by these scripts.

Active Server Objects
Delphi 5 introduces a new wizard
that enables us to create so-called
Active Server (Page) Objects.
These can be used in Active Server
Pages to dynamically generate
HTML code every time the server
loads the page. To create a new
Active Server Object, we must first
create a new ActiveX Library (from
the ActiveX tab of Delphi’s Object
Repository). Once we have an
ActiveX Library, give it a sensible
name (TDM58.dpr for example),
then add an Active Server Object to
it by double clicking on the Active
Server Object icon, in the ActiveX
tab of the Object Repository.

This last step produces the
dialog in Figure 1, which needs
some explanation if you’re seeing it
for the first time. The CoClass Name
is the internal name of our COM
Object. We can pick something like
DrBob42here, or basically anything.
The Instancing and Threading
Model fields have good default
values, as usual. Multiple Instance
means that we have one ActiveX
library which creates an instance
of the DrBob42 object for every
client which wants to connect to it.

Single Instance means that
the ActiveX library can only
create one instance of the
DrBob42 object; so, for every
client which wants to connect
to it, a new instance of the
ActiveX library is loaded to
create a single instance of the
DrBob42 object. The second
option avoids multi-threaded

issues between instances of
DrBob42 objects, but is much more
resource intensive, as it requires a
new executable (ActiveX library,
DLL or OCX) to be loaded for every
client connection.

Check out the book Delphi COM
Programming by Eric Harmon
(reviewed on my website) for more
in-depth information about these
options and their effect.

What’s more interesting are the
Active Server Type options. These
are in fact dependent on the ver-
sion of IIS installed on your web
server. For IIS 3 and 4, the
page-level event methods using
OnStartPage and OnEndPage are
used, while IIS4 (again) and IIS5
can use the object context
approach, using MTS to manage
instance data of the Active Server
Object. Most people I know who
are working with ASP are using the
OnStartPage/OnEndPage way, which
is much easier than using MTS, so
that’s the option we’re going to be
working with. Next time I will show
that the difference is not signifcant
for an ASP developer anyway, as
Delphi does a good job of encapsu-
lating those issues for us.

The last option is used to gener-
ate a (very simple) HTML test
script for this Active Server
Object. If you don’t know ASP or
any of the scripting languages, this
is a good way to learn. It’s very
basic, but the template already
shows you how to call methods of
your Active Server Object, so I
always leave it checked.

This is a good moment to men-
tion the fact that ASP developers
have a number of ASP Objects to
support them, the most important
of which are Request, Response and
Session. Each of these has a
number of properties and meth-
ods that give us access to the
input, output and session state of
the Active Server Pages them-
selves. And the best thing is these

➤ Figure 1



June 2000 The Delphi Magazine 17

Objects are available both in the
scripting language in the Active
Server Pages (the HTML pages)
and in the Active Server Objects, as
for example encapsulated by
Delphi 5. Why do I make this point?
Well, mainly to state that the entire
ASP scripting language can be
ignored by us from now on, since
just about everything we can do in
it can be done in an Active Server
Object as well. The goal in both
locations is to dynamically gener-
ate HTML. And what better way to
do so than inside our Active Server
Object? So, in most cases, the gen-
erated HTML test script will only
need one modification to suit our
needs, and will then be left alone.

In summary, apart from the
CoClass Name, we don’t have to do
anything with this dialog. So, just
type the name of your CoClass
(TDM58) and hit OK to continue. Now
the Active Server Object is created,
including a Type Library, and we
end up in the Delphi 5 Type Library
Editor for the Active Server Object.

You may have noticed from the
Figure 2 screenshot that we
already see the OnStartPage and
OnEndPage methods for our ITDM58
interface. As usual with Type
Library interface methods, we can
see their implementation too in the
unit that contains the source code
for our Active Server Object: see
Listing 1.

Note from this code that if you
want to change from multiple
instance to single instance later,
you can always change
ciMultiInstance to ciSingle-
Instance inside the initialization
section of this unit.

Apart from the Type Library and
source code, you may also have
noticed that a file called

DrBob42.asp is created
(and even opened inside
the Code Editor). This
file has the content
shown in Listing 2.

Like I said before: ASP
tags contain % to distin-
guish them from regular
HTML tags. And in the
single ASP tag, we see a

two-line script. The first line cre-
ates an instance of our DrBob42
object inside the TDM58 ActiveX
library, while the second line calls
a yet-unnamed method from it,
which we must create first.

Custom Methods
Apart from the OnEndPage and
OnStartPage methods, we can now
also specify our custom methods.
For example, using the Type
Library we can add an ASProduce
method to the IDrBob42 interface,
which can be used to produce
dynamic HTML output (such as a
welcome message). After we’ve
added the method and refreshed
the implementation, we can write

the code for the TDrBob42.
ASProduce method. As I mentioned
earlier, ASP offers access to the
Request and Response objects.

Request contains three impor-
tant properties: Form, QueryString
and Cookies. Each of these has an
Item sub-property which can be
used to extract specific values for
specified items. We’ll see some
examples next time, when we con-
nect Active Server Pages to HTML
input forms.

This time, we only want to pro-
duce some dynamic HTML output,
in which case we need to call the
Write method with a string argu-
ment (note that we need to add the
SysUtils unit to the uses clause of
the implementation section to be
able to use the TimeToStr function).
See Listing 3.

The DrBob42.asp file only needs
a single change inside the ASP tags,
so I’m only showing the new ASP
tags in Listing 4.

Deploying
Active Server Objects
This is all it takes to prepare our-
selves for the first operational test
of the Active Server Object inside

➤ Figure 2

unit Unit1;
interface
uses
ComObj, ActiveX, AspTlb, TDM58_TLB, StdVcl;

type
TDrBob42 = class(TASPObject, IDrBob42)
protected
procedure OnEndPage; safecall;
procedure OnStartPage(const AScriptingContext: IUnknown); safecall;

end;
implementation
uses
ComServ;

procedure TDrBob42.OnEndPage;
begin
inherited OnEndPage;

end;
procedure TDrBob42.OnStartPage(const AScriptingContext: IUnknown);
begin
inherited OnStartPage(AScriptingContext);

end;
initialization
TAutoObjectFactory.Create(ComServer, TDrBob42, Class_DrBob42,
ciMultiInstance, tmApartment);

end.

<HTML>
<BODY>
<TITLE> Testing Delphi ASP </TITLE>
<CENTER>
<H3> You should see the results of your Delphi Active Server method below </H3>
</CENTER>
<HR>
<% Set DelphiASPObj = Server.CreateObject("TDM58.DrBob42")

DelphiASPObj.{Insert Method name here}
%>
<HR>
</BODY>
</HTML>

➤ Above: Listing 1 ➤ Below: Listing 2



18 The Delphi Magazine Issue 58

an Active Server Page. All we need
to do now is register the
TDM58.ocx Active Server Object
and place DrBob42.asp in the right
directory on the web server (with
ASP scripting rights).

We can register Active Server
Objects in two ways: as in-process
or out-of-process servers. The
former are more common and
more secure, so we’ll be using
in-process servers only. To regis-
ter TDM58.ocx as an in-process
server, we need to execute Run |
Register ActiveX Server from the
Delphi IDE. To unregister the same
server (for example when you want
to remove it entirely from your
computer), we need to perform Run
| Unregister ActiveX Server.

After we’ve registered the
ActiveX server (which includes our
Active Server Object), we must
deploy our Active Server Page.
This requires a working (and run-
ning) version of Internet Informa-
tion Server (IIS) version 4.0 in this
case: part of Windows NT 4 Server
with the NT4 Option Pack. Alter-
natively, on NT4 Workstation or
Win95/98, it’s possible to use the
Personal Web Server (PWS), but I
must admit I have no experience
with PWS myself (according to the
documentation, it should work
exactly the same).

Having a web server available,
we must make sure that the
DrBob42.asp page is uploaded to a
directory which has the scripting
rights set. In IIS4 this is managed
by the Internet Service Manager
(also part of NT4 Option Pack). For
each directory which contains ASP
web pages, we must specify the
Script attribute (which is ‘less’

than the Execute attribute required
for CGI executables and ISAPI
DLLs). The ActiveX Library that
contains the Active Server Object
can be on any location of the
machine, as long as it’s properly
registered (so the Active Server
Page knows where to find it to
create it).

Once all this is done, we can
open a web browser and enter the
full URL of the Active Server Page
(the .asp file) that we just created.
Note that you must address this
file using an http://... URL, and not
via a file:///... URL (so opening it
from Windows Explorer won’t
work), as a web server must be
‘triggered’ to actually interpret the
ASP scripting code, which isn’t
done if you load a file via the
file:///... protocol.

The IP address of my machine
(also used by IIS4 on my machine)
is 192.168.92.201, and the
DrBob42.asp page was uploaded to
the DOC virtual directory, so the
URL I need is

http://192.168.92.201/
doc/drbob42.asp

which results in the screenshot
shown in Figure 3.

ASP Session Information
Apart from the Request and
Response objects, ASP also has
access to Session, Server and
Application objects. This is actu-
ally one of the benefits of ASP over
CGI and ISAPI: the fact that an
Active Server Object can access
(persistent) session and applica-
tion information without any fur-
ther effort on our part. The most
useful of these is the Session
object, which can be used to main-
tain (session-specific) state infor-
mation. Our TDrBob42 object is

derived from the TASPObject which
has all the above properties, so we
can use them directly, for example,
to store the name of the visitor of
our website. In ASP script, this
could be done as in Listing 5 (note
the second line).

It’s easy to use Delphi code to
obtain this persistent value (per-
sistent among other Active Server
Pages that are visited by the same
user in the same session), since we
can use the Session property. Ses-
sionhas a Valuesproperty which is
the default property, so we can call
Session.Values[‘UserName’] or
Session[‘UserName’] to obtain the
value of the variable with the name
’UserName’ that was set in the
current session (Listing 6).

Great! We no longer have to rely
on fat URLs, hidden fields or cook-
ies to store session-specific persis-
tent information, we can use the
Session object. But how does the
ASP Session object maintain this
state, you ask? Good question! Err,
actually, it’s using cookies behind
the scenes...

Testing And Debugging ASP
Active Server Objects appear to be
like ISAPI DLLs: once loaded, you
need to bring down the web server
to unload them (this is because
Active Server Objects are loaded
by the ASP.DLL which is an ISAPI
DLL in itself). However, the
advantage of ASP is that for the
Active Server Pages themselves,
you can update the scripts as
much as you want, without having
to change, unload or re-upload the
Active Server Objects. As long as
the functionality inside the Active
Server Object doesn’t change, you
only need to update the scripts. Of
course, making sure the Active
Server Objects work correctly is
another task, which at times

procedure TDrBob42.ASProduce;
begin
Response.Write('<H1>Hello, world!</H1>');
Response.Write('<HR>');
Response.Write('The time is: '+TimeToStr(Now));

end;

<% Set DelphiASPObj = Server.CreateObject("TDM58.DrBob42")
DelphiASPObj.ASProduce

%>

➤ Above: Listing 3 ➤ Below: Listing 4

➤ Figure 3



June 2000 The Delphi Magazine 19

requires the ability to debug Active
Server Objects.

The big problem of debugging
Active Server Objects is the fact
that they are loaded by the
ASP.DLL (which is an ISAPI DLL
loaded by the web server), and
they remain loaded in memory as
long as the IIS Admin is loaded.
This means that stopping your web
server is not enough to bring your
Active Server Objects down! And
without them being unloaded, you
cannot even recompile them (not
once they’re loaded). And this is
very painful if you want to make
changes to Active Server Objects.

As soon as you want to update
the Active Server Objects them-
selves, you are in a worse situation
that when using ISAPI DLLs. At
least ISAPI DLLs are unloaded
when you stop the World Wide
Web Publishing Server service. But
for Active Server Objects you even
have to unload the IIS Admin Ser-
vice (which means no WWW, no
FTP, no SMTP, no nothing, every-
thing goes down until you bring it
up again). Because it takes a while
to do all this using the Services
dialog in the control panel, I’ve
written a little batch file
(restart.bat), see Listing 7, that can
do the job for me.

Note that starting the World
Wide Web Publishing Service auto-
matically starts the IIS Admin Ser-
vice too. Any other services
depending on the IIS Admin Service
(such as FTP) will remain down.
Using restart.bat, at least you can

unload the Active Server Object
from memory and recompile it
again. You don’t have to re-register
it (unless you move it to another
location on your machine).

[It’s worth saying, as web hosters
ourselves, that few commercial web
hosters will be remotely interested in
letting you do this kind of thing. In
practical terms, if you want to use
your own Active Server Objects or
ISAPI DLLs, you either need to be
running an intranet or have your
own physical web server, either
co-hosted or on your own dedicated
internet connection. For the web,
these technologies are really for
high-throughput sites only, which
can justify a dedicated server. Ed.]

Chapter 49 of the Delphi 5 Devel-
oper’s Guide (which ships with
Delphi 5) contains a short descrip-
tion of how to debug Active Server
Objects. I don’t know who wrote

this text or why, but it’s plain
wrong and doesn’t work on any of
the machines that I tried it on. Next
time, one of the things I’ll show you
is how to add some clever debug
messages to your Active Server
Objects (although actually debug-
ging them seems to remain next to
impossible).

Next Time
So far, we’ve seen an indication
that Active Server Pages and
Active Server Objects are an alter-
native compared to old-fashioned
CGI or ISAPI web server applica-
tions. Next time we’ll finish our
Active Server Objects coverage as
we dig into the Request object in
some more detail, and I will show
that we can re-use the Page-
Producer and TableProducer com-
ponents from WebBroker (and
even the MidasPageProducer and
hence the InternetExpress XML
stuff), which gives us enough sup-
port to make it worthwhile con-
sidering ASP support as a serious
feature of Delphi 5.

See you next time with more
Active Server Objects, so stay
tuned...

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-Consultant,
Delphi ‘Clinic’ Trainer and
co-founder of the Delphi
OplossingsCentrum of TAS
Advanced Technologies (www.
tas-at.com) in The Netherlands.

➤ Above: Listing 5 ➤ Below: Listing 6

net stop "World Wide Web Publishing Service"
net stop "IIS Admin Service"
net start "World Wide Web Publishing Service"

procedure TDrBob42.ASProduce;
var
UserName: String;

begin
UserName := Session['UserName'];
Response.Write('<H1>Hello, '+UserName+'!</H1>');
Response.Write('<HR>');
Response.Write('The time is: '+TimeToStr(Now));

end;

<% Set DelphiASPObj = Server.CreateObject("TDM58.DrBob42")
Session.Value("UserName") = "Bob Swart"
DelphiASPObj.ASProduce

%>

➤ Listing 7


	Active Server Pages
	Active Server Objects
	Custom Methods
	Deploying Active Server Objects
	ASP Session Information
	Testing And Debugging ASP
	Next Time

